
The goal of this project is to create a Python script that scans the contents of a text file for phone

numbers, email addresses, and website addresses, and then extracts these into separate text files. The

script will employ regular expressions to perform the scanning and extraction tasks, and basic file

operations to read the source text file and write the results to new text files.

Below are detailed requirements for exactly what the program should accomplish:

1. Define Regular Expressions:

Create three separate regular expressions, each designed to match a specific type of data: phone

numbers, email addresses, and website addresses. The regexes should be represented as raw

strings in Python, which are strings prefixed with an 'r' that treat backslashes as literal

characters.

a. Phone Number Regex: This pattern should match a North American phone number that

consists of three groups of digits - 3, 3, and 4 digits long, respectively – that are

separated by either a dash or a space. For example, 123-456-7890 and 123 456 7890

should both be matches.

Also, the first group of three digits may optionally be nested inside of parentheses

(remember: you’ll have to escape these!). This means (123)-456-7890 should match as

well.

b. Email Regex: This pattern should match any sequence of characters consisting of the

following:

i. One or more alphanumeric characters (OR dots), then a “@” symbol (this is the

username)

ii. One or more alphanumeric characters, followed by a dot (remember, you’ll have

to escape any dot characters in your regex)

iii. One of the following: “com”, “net”, or “org” (either-or logic could help here)

Examples of emails that should be matched by your regex include emailme@cmail.com,

number1regexfan@coldmail.net, and match.me@yasshoo.org.

c. Website Regex: This pattern should match website addresses that start with one or

more alphanumeric characters, followed by a dot, and a domain ending in either "com",

"net", or "org". Pretty much just like an email, but without the username (i.e.,

“yourname@”) piece! And that’s kind of the rub!

We need to be able to distinguish emails from websites, but the problem is that

websites basically look like subsets of email addresses. So how to get around this?

Well, you could simply match a broader pattern that neither specifically includes or

excludes the “@” symbol, and then parse the matches out depending on whether they

contain “@”…but that wouldn’t be much fun. This section is about regexes after all!

mailto:emailme@cmail.com
mailto:number1regexfan@coldmail.net
mailto:match.me@yasshoo.org

So instead, I want you to design your regex to ensure that a website match starts with a

sequence of alphanumeric characters, by requiring the preceding character to be either

a whitespace character, or a start-of-string anchor. That way, you know for sure that the

sequence of alphanumeric characters preceding the “dot” in the website address either

comes at the beginning of the string, or after a word in the text -NOT after an “@” sign.

In other words:

- If “mywebsite.com” is at the very beginning of the test string, it should match.

- If it comes after another word in a sentence (i.e., it is preceded by a space), it

should also match. For example, “my website is mywebsite.com” should produce a

match.

- However, “email me at tlc43@mywebsite.com” should NOT produce a match.

One last (important!) consideration – while the start anchor/whitespace character is

technically part of your regex pattern, it should not be included in the string you

ultimately write to a text file. That means you’ll need to put the rest of the pattern in a

group of its own, so it can be captured separately.

Whew! Ok, that’s it on the regex-specific stuff

2. Read the Input File:

Use Python to open and read the provided example file (a plaintext file), using the techniques

you learned earlier in the course.

Since the focus of this section is on regular expressions, you can keep things simple here by

dropping the file into the same directory as your project, so you don’t have to bother with

defining an explicit path to the file.

3. Find Matches with the Regular Expressions:

Use the findall method to find all matches for each regular expression in the contents of the

input file. This should be done separately for each of the three regular expressions, and the

matches should be stored in separate variables.

4. Process the Matches:

For each set of matches (phone numbers, email addresses, and websites), create an empty list.

Then loop through the sets of matches, adding each match to its respective list IF that exact

match isn’t already in the list.

mailto:tlc43@mywebsite.com

Keep in mind that since some of your regexes will have groups, the desired match produced by

the findall method may be nested within a tuple, that is in turn nested inside a list.

Also, since you’ll want each match to appear on a different line in the target text files, you may

want to append a newline character to the end of each match before adding it to its respective

list.

5. Write the Matches to Separate Text Files:

For each list of matches, open a new text file (with filenames such as 'phone_numbers.txt',

'emails.txt', and 'websites.txt') and write the contents of the list to the file. There is a method

built into Python which lets you write a list of data to a text file in one fell swoop – remember it?

