
ADVANCED DISTRIBUTED SYSTEMS DESIGN

WITH SERVICE ORIENTED ARCHITECTURE

Udi Dahan – The Software Simplist
Enterprise Development Expert & SOA Specialist

www.UdiDahan.com

#ADSDcourse

DISTRIBUTED SYSTEMS THEORY

SYSTEMS ARE NOT APPLICATIONS

▪ An application has a single executable and

runs on a single machine

▪ Usually has a single source of information

▪ Applications don’t know about

“connectivity”

▪ A system can be made up of multiple

executable elements on multiple machines

▪ Usually has multiple sources of

information

▪ System must deal with “connectivity”

SYSTEMS ARE NOT APPLICATIONS

▪ Each executable within a system is not

an application

▪ Each executable must deal with

“connectivity”

SYSTEMS ARE NOT APPLICATIONS

“CONNECTIVITY” – THE NETWORK MATTERS

Common assumptions made by developers and

architects in distributed systems

▪ The network is reliable

▪ Latency isn’t a problem

▪ Bandwidth isn’t a problem

▪ The network is secure

▪ The topology won’t change

▪ The administrator will know what to do

▪ Transport cost isn’t a problem

▪ The network is homogeneous

Deutsch 94

Gosling 97

“CONNECTIVITY” – THE NETWORK MATTERS

“The 8 fallacies of distributed computing”

1. The network is reliable

2. Latency isn’t a problem

3. Bandwidth isn’t a problem

4. The network is secure

5. The topology won’t change

6. The administrator will know what to do

7. Transport cost isn’t a problem

8. The network is homogeneous

Deutsch 94

Gosling 97

3 MORE FALLACIES

1. The network is reliable

2. Latency isn’t a problem

3. Bandwidth isn’t a problem

4. The network is secure

5. The topology won’t change

6. The administrator will know what to do

7. Transport cost isn’t a problem

8. The network is homogeneous

9. The system is atomic/monolithic

10.The system is finished

11.Business logic can and should be centralized

Neward 06

#1. THE NETWORK IS RELIABLE

▪ Hardware, software, security can cause issues

var svc = new MyService();

var result = svc.Process(data);

▪ How do you handle HttpTimeoutException?

Data can get lost when sent over the wire

▪ Solutions:

Retry & Ack / Store & Forward / Transactions

Don’t roll your own – too many edge cases

Use reliable messaging infrastructure

MSMQ / Sql Server 2005 Service Broker

▪ But doesn’t provide a request/response
synchronous method-centric model

#1. THE NETWORK IS RELIABLE

#2. LATENCY ISN’T A PROBLEM (==0)

▪ Time to cross the network in one direction

▪ Small for a LAN, WAN & internet can be large

Many times slower than in-memory access

▪ Bad-old days of OO – remote objects

Even accessing a property was a round-trip

Now we use DTO’s

▪ But what about lazy-loading with an ORM?

▪ Solutions:

Don’t cross the network if you don’t have to

Inter-object chit-chat shouldn’t cross the network

If you have to cross the network,

take all the data you might need with you

#2. LATENCY ISN’T A PROBLEM (==0)

#3. BANDWITH ISN’T A PROBLEM (∞)

▪ Although bandwidth keeps growing, the amount of
data grows faster

▪ When transferring lots of data in a given period of
time, network congestion may interfere

▪ ORMs eagerly fetching too much data

▪ Solution:

Move time-critical data to separate networks

Can’t eagerly fetch everything / can’t lazy load
everything

Might need to have more than one domain model
to resolve forces of bandwidth and latency

#3. BANDWITH ISN’T A PROBLEM (∞)

#4. NETWORK IS SECURE

▪ Unless you’re on a separate network that will never,
ever be connected to anything else…

▪ Well, not even then. Viruses, Trojans, etc can still be
brought in by users on CDs, DVDs, DOKs, etc

▪ You can’t be 100% safe from everything

▪ Solution:

Perform a threat model analysis

Balance costs against risks

Most importantly, talk about it. Include PR and
legal.

#4. NETWORK IS SECURE

#5. THE TOPOLOGY WON’T CHANGE

▪ Unless a server goes down and is replaced

▪ Or is moved to a different subnet

▪ Or clients wirelessly connect and disconnect

Issues with WCF callback contracts

▪ What will happen to the system when those hard
coded / config-file values change?

▪ Solution:

Don’t hard-code addresses

Consider using resilient protocols (multicast)

Discovery mechanisms are cool, but hard to get right

▪ Will your system be able to maintain response-time
requirements when this happens?

#5. THE TOPOLOGY WON’T CHANGE

#6. THE ADMIN WILL KNOW WHAT TO DO

▪ Possible in small networks

Until they get run over by a truck promoted.

Their replacement probably won’t know what to do.

▪ If there are multiple admins, rolling out various
upgrades and patches, will everything grind to a halt?

Will client software be able to work with a new
version of the server?

▪ High Availability while upgrading?

▪ Solution:

Consider how to pinpoint problems in production

Some logging is helpful, too much can be harmful

Consider multiple versions running in parallel

Although backwards compatibility is hard

Enable the admin to take parts of the system down
for maintenance without adversely affecting the rest

Queuing technology helps

#6. THE ADMIN WILL KNOW WHAT TO DO

#7. TRANSPORT COST ISN’T A PROBLEM

▪ Serialization before crossing the network (and
deserialization on the other side) takes time.

In the cloud, it can be a big cost factor

▪ The hardware network infrastructure has upfront and
ongoing costs.

▪ Solution:

The effect of serialization on performance further
strengthen the argument to stay away from
chatting over the network

Architects need to make trade-offs between
infrastructure costs and development costs –
upfront vs. ongoing.

#7. TRANSPORT COST ISN’T A PROBLEM

#8. THE NETWORK IS HOMOGENEOUS

▪ It used to be easier - .NET/Java interop works

▪ Now we’ve got Ruby, NoSQL, and stuff people
hacked together over http (a.k.a REST)

▪ Semantic interoperability will always be hard,
budget for it

#9. THE SYSTEM IS ATOMIC

▪ Maintenance is hard in “big balls of mud”

Changing one part of the system affects other parts

▪ Integration through the DB creates coupling

It gets worse with XML in the DB

▪ If the system wasn’t designed to scale out to multiple
machines, doing so may actually hurt performance

▪ Solution:

Internal loose coupling

Modularize

Design for scale out in advance, or you just may end
up being stuck with scale up.

#9. THE SYSTEM IS ATOMIC

#10. THE SYSTEM IS FINISHED

▪ Maintenance costs over the lifetime of a system are
greater than its development costs

▪ The system is never “finished”

Effort ($/T)

Time

“Normal Project”

“Product”

“Finished”

Rewrite

Original date

▪ Solution:

There’s no such thing as a “maintenance
programmer”

Projects are a poor model for software development

Long-lived products are better

Beware the rewrite that will solve everything

#10. THE SYSTEM IS FINISHED

A BETTER DEVELOPMENT
PROCESSThe Business IT

Requirements Business

Analyst

workarounds

Rapid Prototyping

So you wish X could be better/cheaper/faster

Exactly! (still not a requirement)

The Business IT

ArchitectEstimate

Too broad a range

Estimate: Given a well-formed team of size S

that is not working on anything else

I’m C% confident work will take between T1 & T2

Let me do a POC for T

Go ahead with POC

New Estimate

Estimate accepted

Now it’s a requirement

A BETTER DEVELOPMENT PROCESS

The Business IT

Project

Manager

So it’ll be ready in T2?

No. We’ve committed

already to years of work

Reprioritize requirements

New dates

Schedule accepted

A BETTER DEVELOPMENT PROCESS

#11. BUSINESS LOGIC CAN AND
SHOULD BE CENTRALIZED

▪ “First name must be less than 40 characters”

Enforce in the UI? BL? DB? Everywhere?

What about when the business rules change?

Entities

Calculation

Validation

Services

▪ Solution:

Logic will be physically distributed

Can still “centralize” in the development view

[more reading] 4+1 views of software architecture

“Tag” source code by feature implemented

Enables finding all code by feature

Even if its in multiple files

https://github.com/Particular/Presentation.MultiDimensional

#11. BUSINESS LOGIC CAN AND
SHOULD BE CENTRALIZED

▪ Best practices have yet to catch up to

“best thinking”

▪ Technology cannot solve all problems

▪ Adding hardware doesn’t necessarily help

SUMMARY

COUPLING IN DISTRIBUTED
SYSTEMS

WHAT IS COUPLING?

▪ A measure of dependencies

▪ If X depends on Y,

there is coupling between them

▪ 2 kinds of coupling: Afferent (Ca), Efferent (Ce)

WHAT IS COUPLING?

▪ Afferent coupling (Ca) – who depends on you

Incoming coupling

▪ Efferent coupling (Ce) – on who you depend

Outgoing coupling

WHAT IS COUPLING?

▪ If X depends on Y then:

▪ X is efferently coupled to Y

▪ Y is afferently coupled to X

COUPLING – WHICH KIND IS WORSE?

Afferent (Incoming) Efferent (Outgoing)

A 5 0

B 0 5

C 2 2

D 0 0

HOW TO COUNT COUPLING?

X Y

Only one method call

A B

3 methods,

2 properties

Same amount of coupling?

Different?

BEWARE SHARED RESOURCES

A B

DB

They hide the coupling that

otherwise would be visible

LOOSE COUPLING AT THE SYSTEMS LEVEL

▪ Minimize afferent and efferent coupling

But not mechanically

▪ Zero coupling isn’t really possible

▪ 3 Different aspects of coupling for systems:

Platform

Temporal

Spatial

COUPLING ASPECT #1: PLATFORM

▪ Also known as “Interoperability”

▪ Using protocols only available on one platform

Remoting, Binary Serialization, etc

▪ One of the 4 Tenets of Service Orientation:

“Share contract and schema, not class or type”

COUPLING ASPECT #2: TEMPORAL

Processing time of Service B affects that of A

Service A

Synchronous Call

Waiting Working

Return

Service B

COUPLING ASPECT #3: SPATIAL

Can communication automatically continue?

Service A

Service

B

Service

B

?

COUPLING ASPECTS:
SOLUTIONS

COUPLING ASPECT #1: PLATFORM

▪ Many options possible for interoperability.

Text-based representation on the wire (XML/JSON)

With or without schema

Use standards based transfer protocol like http

Or SMTP, UDP, etc

SOAP / WSDL / REST

ADDITIONAL PLATFORM SOLUTIONS

▪ Running Java code in-process on the CLR

▪ Running .Net code in-process on the JVM

COUPLING ASPECT #2: TEMPORAL - 1

Resources are held while waiting

Service A Service B

Customer GetCustomerInfo(id)

Calling thread is

waiting for the

result

MakeCustomerPreferred(id)

Save customer as preferred

COUPLING ASPECT #2: TEMPORAL - 2

Resources are held while waiting. Increased load on
service B per consumer (impacted by polling interval)

Service A Service B

YieldCustomerInfo(id)
MakeCustomerPreferred(id)

Spawn polling thread

Got data?

Data ready

Got data?

Got data?

Save customer as preferred

Data ready but

not passed to

consumer

COUPLING ASPECT #2: TEMPORAL - FINAL

Good. By separating (in time) the inter-service
communication and the request handling

Service A Service B

Publish updated customer infoStore data

MakeCustomerPreferred(id)

Save customer as preferred

PUB/SUB TEMPORAL CONSTRAINTS

▪ Subscriber must be able to make decisions based on
somewhat stale data

▪ Requires a strong division of responsibility between
publishers and subscribers

▪ Only one logical publisher should be able to publish
a given kind of event

HOW TO DESIGN EVENTS

▪ Avoid requests/commands

Bad: “SaveCustomerRequested”

▪ State something that happened (past tense)

Subscribers shouldn’t be able to invalidate this

Good: “OrderAccepted”

▪ If you have to talk about data, state its validity

ProductPriceUpdated { Price: $5, ValidTo: 1/1/15 }

WHERE (AND WHY) NOT TO DO PUB/SUB

A

C

E

B

D

Service 1 Service 2

Service X

Service Y

when business requirements demand consistency

COUPLING ASPECT #3: SPATIAL

▪ Application level code should not need to know
where cooperating services are on the network

▪ Delegate communications to lower layer – the service
agent pattern

myAgent.Send(message);

▪ How does the agent know which destination to send
the message to?

LOAD BALANCING

▪ Clients talking to servers through a load balancer
don’t know which physical server is handling the
request…

▪ … as long as logically the server CAN handle the
request

▪ Routing is first logical, and second physical

COUPLING ASPECT #3: SPATIAL

▪ But if the application code doesn’t tell the agent
which logical destination to send the message to, how
would the agent know?

▪ If there was a direct mapping from message type to
logical destination, then specifying the type of
message being sent/published would be enough

MESSAGE TYPE = LOGICAL DESTINATION

▪ AddCustomerMessage:

Sent by clients to one logical server

Multiple physical servers behind a load balancer

▪ OrderCancelledEventMessage:

Published by one logical server

Multiple physical servers can publish the same

▪ Strongly-typed messages simplify routing

vs document-centric messaging

SUMMARY

▪ Loose coupling is more than just a slogan

▪ Coupling is a function of 5 different dimensions

Efferent

Afferent

Platform Temporal

Spatial

MESSAGING PATTERNS

WHY MESSAGING?

▪ Reduces afferent and efferent coupling while
increasing autonomy

▪ Reduces coupling

Use JSON/XML + AMQP for platform coupling

Use asynchronous messaging for temporal coupling

MESSAGING, COUPLING, & AUTONOMY

Service A and B don’t directly depend on each other

Service A

Communications

Schema A

Service B

Schema B

ASYNCHRONOUS MESSAGING

▪ It’s all about one-way, fire & forget messages

▪ Everything is built on top of it

Return Address pattern

Correlated Request/Response

Publish/Subscribe

ONE-WAY, FIRE & FORGET MESSAGING

Each message has an Id.

Seems simple, but there’s more to it.

Target

Service

Sends, and

keeps on

working

Initiating

Service

Id

MSMQ

Outgoing Incoming

Server

Client

MSMQ

Outgoing Incoming

Store and
Forward

adds resilience

PERFORMANCE – RPC vs MESSAGING

▪ With RPC, threads are allocated with load

With messaging, threads are independent

Difference due to synchronous blocking calls

▪ Memory, DB locks, held longer with RPC

Throughput

Load

RPC

Messaging

STANDARD SERVICE INTERFACES

Customer Service

void Change_Address(Guid id, Address a);

void Make_Preferred(Guid id);

void Change_Credit(Guid id, Credit c);

• Problem is that service layers get too large

• Difficult for multiple developers to collaborate

• Difficult to reuse logging, authorization, etc

EXPLOIT STRONGLY-TYPED MESSAGES

IMessage

where T : IMessage

IHandleMessages<T>
void Handle(T message);

REPRESENT METHODS AS MESSAGES

IMessage

Change_Address_Msg
Guid Id

Address A

Make_Preferred_Msg
Guid Id

Change_Credit_Msg
Guid Id

Credit C

IHandleMessages<T>
void Handle(T message);

H1: IHandleMessages<Change_Address_Msg>

H2: IHandleMessages<Make_Preferred_Msg>

H3: IHandleMessages<Change_Credit_Msg>

HANDLING LOGIC SEPARATED

MULTIPLE HANDLERS PER MESSAGE

H1: IHandleMessages<Change_Address_Msg>

H4: IHandleMessages<Change_Address_Msgv2>

• Dispatch based on type polymorphism

• Allows for pipeline of handler invocation

FAULT-TOLERANCE - SCENARIOS

▪ When servers crash

▪ When databases are down

▪ When deadlocks occur in the database

WHEN SERVERS CRASH

DBApp

[HTTP] $$ Order

Tx
Call 1 of 3

Call 2 of 3

App pool
recycle

Rollback

Where’s the order!?

App

[HTTP] $$ Order

Tx

WHEN DATABASES ARE DOWN

Exception

Write to log

DB
Call 1 of 3

Down

Where’s the order!?

TxApp

[HTTP] $$ Order

WHEN DEADLOCKS HAPPEN

DB
Call 1 of 3

Deadlock

Exception

Write to log A B

Call 2 of 3

Where’s the order!?

HOW DOES MESSAGING HELP?

Bus
$$ Order

Your
code

TX Receive

DB
Call 1 of 3

Rollback

Call 2 of 3

Rollback

The order is back in the queue

Invokes

DTC

Enlists

Q

Retry

AFTER ALL RETRIES EXHAUSTED

Retry

Error

Queue

Append exception info

to headers*

* NServiceBus feature – not done by all queues natively

a.k.a “poison letter queue”

Moved failed message
Notify
admin

MONITORING

AUDITING / JOURNALING

▪ Sends a copy of the message to another queue
when it is processed

Supported out-of-the-box by most queues

Extract to longer-term storage

So the queue doesn’t “explode”

▪ A central log of everything that happened

▪ Can be difficult to interpret by itself

LEVERAGING MESSAGE HEADERS

Endpoint 1

Message ID: 1

Related To: 1

Message ID: 2

Related To: 2

Message ID: 3

Audit

Endpoint 2 Endpoint 3

Connect outgoing messages to ID of
message being processed

VISUALIZING THE AUDIT STORE

CALLING WEB SERVICES

A B C D

WS

DB
[HTTP] Invoke

$$ Order

Deadlock

Rollback

Not Rolled back

WEB SERVICES WITH MESSAGING

Messaging
Gateway

A B C D

WS

Msg

DB

$$ Order

[HTTP]
Invoke

The message won’t be sent if there’s a failure

RETURN ADDRESS PATTERN

2 Channels: one for requests, one for responses

Return Address

Target

Service

Return

Address

Some time in

the future

Initiating

Service

Client

MSMQ

Outgoing Incoming

MSMQ

Outgoing Incoming

Server

Client

CORRELATED REQUEST/RESPONSE

In the header of the response message, there is a
correlation id equal to the request message id

Target

Service

Some time in

the future

Initiating

Service

Message ID

Correlation ID

Based on Return Address

REQUEST / MULTI RESPONSE

Responses can be of different types

Target

Service
Initiating

Service

SUBSCRIBE / PUBLISH

PublisherSubscriber
Subscribe

Publish

Publish

Publish

Publish

publisher

Subscribe

subscriber

subscriber

subscriber

subscriber

subscriber

publisher

subscriber

subscriber

subscriber

subscriber

subscriber

abcdefgh

abcdefgh

abcdefgh

abcdefgh

abcdefgh

DON’T FORGET CONSISTENCY
BOUNDARIES

Service A Service B

Publish updated customer infoStore data

MakeCustomerPreferred(id)

Save customer as preferred

publisher

subscriber

subscriber

subscriber

subscriber

Sub3 LB

TOPIC HIERARCHIES & POLYMORPHISM

▪ Subscribe to “Products”, “Products.InStock”,
“Products.InStock.PricedToClear”

▪ Multiple-inheritance even more interesting

Publishing an event A which inherits B, C, and D

Can subscribe to any or all A, B, C, or D

Must use interfaces (not classes)

Might not be supported by standard serializers

EVENTS: IN-PROCESS VS. DISTRIBUTED

▪ In-memory, synchronous invocation

Publisher can know when all subscribers up to date

▪ Distributed, asynchronous invocation

Publisher (and other subscribers) can’t know

OUT-OF-ORDER EVENTS

Sales Billing

Shipping

Order Accepted

Order Accepted

Order Billed

Can’t find order in DB

Throws away the message

Now waits for OrderBilled

which won’t arrive again

VISUALIZATION WITH MESSAGING

https://particular.net/blog/what-does-your-particular-system-look-like

SUMMARY

▪ Building blocks are simple

IMessage

IHandleMessages

Send, Reply, and Publish

▪ Identifying boundaries is most important

EASING CORPORATE ADOPTION

▪ People are afraid of change

▪ Meet them where they are

▪ Consider using database tables under a message-
driven API

▪ Diffuses admin/backup/monitoring objections

▪ Message-driven code is a good first step

ARCHITECTURAL STYLES
BUS & BROKER

WHAT IS AN “ARCHITECTURAL STYLE”?

An architectural style is a coordinated set of
architectural constraints that restricts the
roles/features of architectural elements and the
allowed relationships among those elements within
any architecture that conforms to that style.

Fielding 2000

In plain English:

What is and isn’t allowed in an architecture

Doesn’t say “there can be only one”

Should expect multiple styles in a project

- Layering, MVC, pipes & filters, etc.

WHAT IS AN “ARCHITECTURAL STYLE”?

SOA

EDA
MVC

Pipes &

Filters

REST

DDD

Layers

CQRS

WHAT TO USE WHEN?

SOA AS AN ARCHITECTURAL STYLE

▪ SOA likely to be founded on messaging

▪ It is best to first understand current styles also
founded on messaging before going to SOA

BUS & BROKER COMMONALITIES

▪ Attempt to handle spatial coupling

BROKER ARCHITECTURAL STYLE

Also known as “Hub and Spoke” and “Mediator”

Designed to avoid having to change apps – EAI

App 7
Broker

App 6

App 5 App 4

App 3

App 2

App 1App 9App 8

BROKER CHARACTERISTICS

▪ Broker is physically separate

▪ All communication goes through the broker

▪ Broker handles fail over, routing

▪ The broker is a single point of failure, must be robust
and performant.

BROKER TECHNOLOGY

▪ BizTalk / WebSphere / Sonic ESB

▪ MS Sql Service Broker

▪ BPEL Engines

▪ CORBA

▪ UDDI

BROKER ADVANTAGES

▪ Concentrating all communications to a single logical
entity, enables central management

▪ Enables “intelligent” routing, data transformation,
orchestration

▪ Doesn’t require changes to surrounding apps

BROKER DISADVANTAGES

▪ Embodies the 11th fallacy:

“Business logic can and should be centralized”

▪ Procedural programming at a large scale

Without good unit testing or source control

▪ Prevents apps from gaining autonomy

BUS ARCHITECTURAL STYLE

▪ Event source and sinks use bus for pub/sub

▪ Designed to allow independent evolution of sources
and sinks

Sink

Source Sink

Source

Bus

BUS TOPOLOGY
App

Bus.dll

App

Bus.dll

App

Bus.dll

App

Bus.dll

App

Bus.dll

App

Bus.dll

App

Bus.dll

App

Bus.dll

BUS CHARACTERISTICS

▪ Bus is not necessarily physically separate

▪ Communication is distributed

No single point of failure

▪ Bus is simpler – no content-based routing or data
transformations

▪ Orthogonal to the broker style

BROKER TECHNOLOGIES CALLED ESBS

▪ Some “New” ESB products actually brokers

WebSphere, Mule, Sonic

App 1

Voila! A bus! See, everything is at right angles!

App 5 App 6 App 7 App 8 App 9

App 4App 3App 2

BUS TECHNOLOGY

▪ Open-source on the Microsoft platform

NServiceBus, MassTransit, Rhino Service Bus

▪ “Old” JMS implementations / Federated AMQP

Tibco Rendezvous, RabbitMQ, Qpid

Not all support distributed / XA transactions

BUS ADVANTAGES

▪ No single point of failure

▪ Doesn’t break service autonomy

BUS DISADVANTAGES

▪ More difficult to design distributed solutions than
centralist ones

Shipping Billing

Sales

THE BEST OF BOTH WORLDS

biztalk

NServiceBus

BizTalk Adapter

Amdocs

Business Logic

Data Access Logic

peoplesoft

3 ELEMENTS OF INTEGRATION

▪ Data transformation

▪ Protocol Bridging

▪ Business Logic

IP*Works

Ftp, SMTP, POP, SMS

LDAP, DNS, etc

XML, DB, Flat file, EDI

XBRL, WS, etc

SUMMARY

▪ Feature-rich broker products less suited to distributed
systems than robust bus products.

▪ Projects will likely use a combination of both bus and
broker

SOA BUILDING BLOCKS

WHAT IS A SERVICE?

Tenets of Service Orientation:

1. Services are autonomous.

2. Services have explicit boundaries

3. Services share contract & schema,

not class or type

4. Service interaction is controlled by policy.

SERVICE ORIENTATION

Service A

Communications

Schema A

Service B

Schema B

WHAT IS A SERVICE?

A service is the technical authority for a specific
business capability.

All data and business rules reside within the service.

Nothing is “left over” after identifying services

Everything must be in some service

WHAT A SERVICE IS NOT

▪ A service that has only functionality is a function

not a service.

Like calculation, validation

▪ A service that has only data is a database,

not a service.

Like [create, read, update, delete] entity

▪ WSDL / REST doesn’t change logical responsibility

4+1 VIEWS OF SOFTWARE ARCHITECTURE

▪ Services are in the logical view

▪ Mapping to the development view, a service could
be a source control repository

SERVICE EXAMPLES

Subscribe to Customer

Status Updated

Publish

Customer Status Updated

Translate status to

discount & save

Subscribe to Product

Pricing Updated

Publish

Product Pricing Updated

Save pricing locally

Place Order

Publish Order Accepted

Sales

MarketingCustomer

Care

SERVICE EVENT LIFECYCLES

Order

Received

Customer

Billed

Order

Shipped

Inventory

Replenished
Price

Changed

Business processes remain within services

Cascading events give rise to enterprise processes

WHICH SERVICE OWNS THIS PAGE?

WHICH SERVICE OWNS THIS PAGE?

None

SERVICE DEPLOYMENTS

▪ Many services can be deployed to the same box

▪ Many services can be deployed in the same app

▪ Many services can cooperate in a workflow

▪ Many services can be mashed up

in the same page

SAME PAGE COMPOSITION

Server

Product Catalog

Pricing

Inventory

Cross Sell

TOP-TO-BOTTOM SERVICES

UI

BL

DAL

DB

API

DEMO
ASP.NET MVC CompositeUI

bit.ly/particular-microservices

HOW TO MAKE A GRID

HOW TO MAKE A GRID

client-side message broker

Component from

product-catalog

Component from

finance

Component from

marketing

View

model

Component from

product-catalog

Component from

finance

http://mydomain.com/products/123

Component from

marketing

ProductNameA

€ 20.00

cover

image

A

AuthorNameA

ProductNameB

€ 20.00

cover

image

B

AuthorNameB

ProductNameC

€ 20.00

cover

image

C

AuthorNameC

ProductNameD

€ 20.00

cover

image

D

AuthorNameD

load related

products

HOW TO MAKE A GRID

client-side message broker

Component from

product-catalog

Component from

finance

Component from

marketing

View

model

Component from

product-catalog

Component from

finance

http://mydomain.com/products/123

Component from

marketing

ProductNameA

€ 20.00

cover

image

A

AuthorNameA

ProductNameB

€ 20.00

cover

image

B

AuthorNameB

ProductNameC

€ 20.00

cover

image

C

AuthorNameC

ProductNameD

€ 20.00

cover

image

D

AuthorNameD

publish `RelatedProductsFound`

load related

products

receive event

HOW TO MAKE A GRID

Component from

product-catalog

Component from

finance

Component from

marketing

View

model

Component from

product-catalog

Component from

finance

http://mydomain.com/products/123

Component from

marketing

ProductNameA

€ 20.00

cover

image

A

AuthorNameA

ProductNameB

€ 20.00

cover

image

B

AuthorNameB

ProductNameC

€ 20.00

cover

image

C

AuthorNameC

ProductNameD

€ 20.00

cover

image

D

AuthorNameD

load related

products

OTHER COMMON ELEMENTS

▪ Color scheme, layout, fonts, CSS, images, etc

▪ All communicate the “corporate brand”

▪ The responsibility of the “branding” service

LAYOUT IN THE BRANDING SERVICE

▪ View Models created with Whatever.js

Angular / React / Knockout / Backbone / etc

▪ Can also be done server-side

▪ Each service binds its model to part of the view
model

OR LEVERAGE CSS CLASSES

<div class=“price”>$49.99</div>

Makes it bold, red, large

<div class=“inventory.InStock>12 left</div>

Makes it bold and green

Go even farther with JS CSS preprocessors:

Mustache, LESS, Sass

IT/Ops client/JS library

Component

from Service

A

1. Raise event

Component

from Service

B

Component

from Service

C
2. Callback

3. Call server
(callback)

4. Holds requested call in memory

5. Callback

6. Call server
(callback)

7. Holds requested call in memory

8.

IT/Ops server library

9. Actually calls server

10. Unpacks & dispatches requests

Component

from Service

B

Component

from Service

C

11. Collects responses & returns to client

12. Dispatches
client callbacks

13. Callback
(data)

14. Callback
(data)

PERFORMANCE OPTIMIZATION

ACROSS THE ENTERPRISE SERVICES

S1 S2 S3

MOBILE

BACK END

PORTAL

http://go.particular.net/octopus

http://go.particular.net/octopus-script

an example
CONFIGURATION MANAGEMENT

AMAZON.COM CHECKOUT WORKFLOW

WHICH SERVICE OWNS THIS FLOW?

WHICH SERVICE OWNS THIS FLOW?

None

OrderReceived

WORKFLOW EVENT COMPOSITION

Finance ShippingSales

CustomerBilled

OrderShipped

WORKFLOW EVENT COMPOSITION

SetOrderId = 022032ba-1337-43a5-90c9-d48b58742c7

WORKFLOW COMPOSITION

Shipping

Shipping

Billing

Billing

Sales

Sales

PARENT VS CHILDREN

Id ShippingId FinanceId Etc

123 1337 42 …

124 1338 43 …

Orders table

Sales Shipping Finance

Id ProductId

123 ABC

124 ACD

Orders table

OrderId Address

123 Haifa, Israel

124 Rotterdam, Holland

Shipping table

OrderId Status

123 Paid

124 Overdue

Invoices table

VS

PARENT VS CHILDREN
Orders table

Sales Shipping Finance

Id ProductId

123 ABC

124 ACD

Orders table

OrderId Address

123 Haifa, Israel

124 Rotterdam, Holland

Shipping table

OrderId Status

123 Paid

124 Overdue

Invoices table

VS

eBookShipping table

OrderId UrlIdentifier

1234 03630b562df15c6

1235 4c77a8e12cb1c216

OrderId BitcointId

4242 1d7e565784907

4243 6561433f9245710

BitcoinInvoices table

Id ShippingId FinanceId Etc

123 1337 42 …

124 1338 43 …

WHAT ABOUT THE TECHNICAL STUFF?

▪ Authentication, Authorization, etc

▪ A service should own this

shouldn’t it?

THE IT/OPERATIONS SERVICE

▪ Responsible for keeping information flowing (and
secure) in the enterprise

▪ Focused on the deployment & physical views:

Responsible for hosting (web servers, DBs, etc)

Owns connection strings, queue names

Authentication, authorization – LDAP/AD access

IT/OPS HARDLY EVER SUBSCRIBES

▪ Doesn’t really do pub/sub with other services

▪ One (rare) case

HR – employee hired, employee fired

Provisions / De-provisions machines, accounts, etc

Don’t introduce this unless necessary

INTEGRATION ENDPOINTS (+ EMAIL)

IT/Ops

DataExporter

message handler

IProvideCustomerInfo IProvideBillingInfo IProvideOrderTotal

Customer

Care

Billing Finance

REPORTING – CAN BE HARDER

▪ But not that different from Composite UI grids

▪ But there is a better way:

▪ Regular reports:

Find the pattern users are looking for in the report

Model constants as domain concerns

Implement as event-correlation & send email

▪ Research / Data Science

REFERENTIAL INTEGRITY

▪ Inserting “children” without a “parent” across service
boundaries

Solved by eventual consistency

▪ Deleting – but not “cascading”

Private data – wholly inside a service. OK

Public data – shared between services. Not OK.

Eg. Deleting a product. What about orders,
inventory?

HOW DO YOU
FIND THE BOUNDARIES?

DECOMPOSING A DOMAIN

public class Customer
{

FirstName
LastName
Status
// etc

}

public class Product
{

Name
Description
Price
// etc

}

Customer
Status

Product
Price

Customer
FirstName
LastName

Product
Name
Description

vs

HEALTHCARE

Doctors Service Patient Service

Psychology

Service

Surgery Service

Dentistry Service

PatientId

Laboratory data

Allergies information

Medication

PatientId

Orthodontical data

Medication

Medication

Service
Allergies

Service

General Practitioner

Basic patient information

Basic doctor visits

vs

INSURANCE

Policy Service Claims Service

Automotive

Insurance

Home Insurance Travel

InsuranceHome owner

Coverage

PolicyId

ClaimId

Insured persons

Coverage

PolicyId

ClaimId

Home insurance

Travel insurance

Automotive insurance

Home insurance

Travel insurance

Automotive insurance

Insured vehicle

Coverage

PolicyId

ClaimId

team

service

boundary

team

service

boundary

team

service

boundary

team

service

boundary

team

service

boundary

TEAM STRUCTURE FOR SOA

* Task-forces as a new/alternate model

IT/Ops

Branding

▪ Startups

▪ Generic / extensible “platforms”

WHEN NOT TO DO SOA

SOA HOMEWORK

YOUR MISSION

▪ Identify the service boundaries

▪ What data does each service own?

▪ What part of which UI does it own?

▪ What events does it publish / subscribe to?

THE USE CASES:

▪ For a single hotel

▪ With only 1 guest per reservation

1 room per reservation

▪ No loyalty program / sign-in

ONLINE #1

▪ Search for availability

ONLINE #2

▪ Make a booking

ONLINE #2.1

▪ Make a booking

Fill in guest info

Fill in credit card

ONLINE #2.2

▪ Make a booking – additional requirements:

▪ First, authorize credit card for cancellation $$

▪ If successful, see if a room is still available

If not, release authorization, tell user “no room”

▪ Although email confirmation should be sent, result of
booking should be on next screen

ONLINE #2.2

▪ Make a booking – important domain info:

▪ Room number not allocated at time of booking

▪ Rooms not “locked” while booking in-process

▪ Capacity MUST be respected

Can’t have 50 people all book the last room

FRONT DESK #3

▪ Check-in

Find booking

by last name

Verify info

Authorize $$

for full stay

Allocate room

FRONT DESK #4

▪ Check-out

Night before:

print out bill

Guest leaves room

Person verifies

Card is charged

amount authorized

BUSINESS & AUTONOMOUS
COMPONENTS

SERVICE DECOMPOSITION

▪ The large-scale business capability that a service
provides can be further broken down

▪ “Business Components” refer to the technical elements
that implement the capability’s constituent parts

QUALITY OF SERVICE REQUIREMENTS

Order 10 Products

Order 10 Million

Products

Sales

Sales

Order 10 Million

Products

Regular

Customers

Strategic

Customers

BUSINESS COMPONENTS

Order 10

Products

MORE EXAMPLES

▪ Airlines

Different counters for business class customers

▪ Shipping

Need to track temperatures for frozen goods / meat

Can use regular trucks for toilet paper

▪ Billing

Monthly invoicing for customers with an agreement

Others billed directly to credit card

BUSINESS COMPONENTS & PUB/SUB

Order Billed

Fulfillment

Regular

Products

Perishable

Products

Billing

TRANSACTIONS

▪ Some kinds of messages don’t change state

▪ Other kinds of messages can get lost in case of failure
(volatile data like stock quotes)

▪ We can divide a Business Component along
transactional lines for improved performance, into
“Autonomous Components”

Transactions stay within the boundary of an AC

AUTONOMOUS COMPONENTS

▪ A Business Component is composed of one or more
Autonomous Components

▪ An Autonomous Component is responsible for one or
more message types

Composed of one or more message handlers and the
rest of the layers in the service

Is an independent package (NuGet)

Message

Handler

Bus

AUTONOMOUS COMPONENT MAKEUP

Schema Message

Type

endpoint

Common

Service

Layers

Multiple ACs can be

hosted together

AC DEPLOYMENT INTO SYSTEMS

S1 S2 S3

MOBILE

BACK END

PORTAL

AC’S , BC’S, AND SERVICES

AC

Service

AC

DB

BC

AC

AC

DB

BC

COUPLING BETWEEN ACS

▪ Don’t try to reuse code between ACs

▪ Strive for “disposable” code

▪ Solve for today’s problem – not tomorrow’s

JFHCI

SHADES OF AUTONOMY

MsgDB
Storage End

Point

SharedSharedSharedShared

OwnSharedOwnShared

OwnOwnOwnOwn

AC

Order

Order

Processing

Strategic

Customers

SOA => BUSINESS VALUE

SUMMARY

▪ Autonomous Components are the unit of packaging
in SOA – deployed into Systems.

▪ An AC takes responsibility for a specific set of
message types in the service (ideally 1).

▪ Strive to use the bus style between ACs.

SERVICE STRUCTURE
COMMAND/QUERY RESPONSIBILITY SEGREGATION

SERVICES

AC’S , BC’S, AND SERVICES

AC

Service

AC

DB

BC

AC

AC

DB

BC

MULTI-USER COLLABORATION

Get dataGet data

Change

data

User is

looking at

stale data

Need to assume users are looking at stale data

HOW MUCH DATA IS COLLABORATIVE?

SIMPLEST SOLUTION? HARDLY.

UI

Facade

BL

DAL

DB

Cache

WHY TRANSFORM BETWEEN TIERS?

Use ORM to map

from tables to

domain objects

Map from DTOs

and WS to

domain objects

Map from DTOs &

WS to view model

DB
WS

UI

Cache

Keeping the cache up to date is even more work

SIMPLER SOLUTIONS

▪ Datasets UI through to DB

▪ Ruby on Rails

Document DB

Browser

JSON over HTTP
IT/Ops

authentication

and authorization

can intercept

FACETED SEARCH

watches

Search:

Consectetur adipiscing elit. Etiam in
laoreet ante. Etiam rutrum neque nec
dui consequat, in pulvinar leo porttitor.
Mauris congue, arcu et semper lacinia,.

Product A

FitBit

Casio

Casual

Style

Brand

Luxury

Under $25

Price

$25 to $100

Consectetur adipiscing elit. Etiam in
laoreet ante. Etiam rutrum neque nec
dui consequat, in pulvinar leo porttitor.
Mauris congue, arcu et semper lacinia,.

Product B

Consectetur adipiscing elit. Etiam in
laoreet ante. Etiam rutrum neque nec
dui consequat, in pulvinar leo porttitor.
Mauris congue, arcu et semper lacinia,.

Product C

Consectetur adipiscing elit. Etiam in
laoreet ante. Etiam rutrum neque nec
dui consequat, in pulvinar leo porttitor.
Mauris congue, arcu et semper lacinia,.

Product D

search results

RECOMMENDATION ENGINES

client-side message broker

Component from

product-catalog

Component from

finance

Component from

marketing

View

model

Component from

product-catalog

Component from

finance

http://mydomain.com/products/123

Component from

marketing

ProductNameA

€ 20.00

cover

image

A

AuthorNameA

ProductNameB

€ 20.00

cover

image

B

AuthorNameB

ProductNameC

€ 20.00

cover

image

C

AuthorNameC

ProductNameD

€ 20.00

cover

image

D

AuthorNameD

load related

products

HIGH CONTENTION DOMAINS

REGULAR LOGIC CHOKES

Id Name Quantity

42 Harry Potter 1 7

1337 Harry Potter 2 1000

Inventory table

begin transaction

var quantity = select Quantity from Inventory

where Id = @ProdId

if (quantity >= quantityRequested)

update Inventory

set Quantity = quantity – quantityRequested

where Id = @ProdId

commit transaction

CONNECTION POOL DRIES UP

Business needs to get flexible
Negative inventory is OK

APPEND ONLY DATAMODELS

ProductId Delta Timestamp

1337 -5 09:03:22 17-1-2016

1337 -3 09:03:24 17-1-2016

1337 -4 09:03:25 17-1-2016

1337 -1 09:03:27 17-1-2016

1337 +250 09:03:28 17-1-2016

1337 -4 09:03:30 17-1-2016

EventSourcing? Not quite.

No locking

Responsibility shifted

select sum(Delta) where…

data will expand fast!

ADD SNAPSHOTTING

ProductId Delta Timestamp

1337 +250 09:03:28 17-1-2016

begin transaction

select @quantity = sum(Delta),

TimeStamp.Before(5.min.ago)

from Inventory where Id = @ProdId

delete from Inventory where Id = @ProdId

and TimeStamp.Before(5.min.ago)

insert into Inventory @ProdId, @quantity, now()

commit transaction

...OR ATOMIC INCREMENT

+100-1

network

partition

-3-2-4-1

CQRS THEORY

QUERIES

?

BE UP FRONT ABOUT QUERY STALENESS

Balance correct as

of 10 minutes ago

Your account

KEEP QUERIES SIMPLE

Persistent View Model

UI

Query only

For each view in the UI,
have a view/table in the DB

2 Layers == 2 Tiers

SELECT * FROM MyTable (WHERE ID = @ID)

DATA DUPLICATED, NO RELATIONSHIPS,
DATA PRE-CALCULATED

List of customers

Customer Service Rep view

ID Name Phone

List of customers

Supervisor view

ID Name Phone Lifetime value

Rep_Customers_Table Supervisor_Customers_Table

DEPLOYMENT AND SECURITY

▪ Deploy the persistent view model DB to the web tier
(only SELECT is permitted)

Don’t have to go through the firewall – faster

▪ Role-based security

Different screens for different roles go to different
tables – SELECT permissions per role

▪ Just as secure as in-memory caches

If not more so

USE FOR PRELIMINARY VALIDATION

▪ Before going to submit data, check if it already
exists in the persistent view model

▪ Uniqueness

Can expose to user (user signup)

▪ Related Entity Existence

Address validation – existence of street name

▪ Results in less commands being rejected

COMMANDS

!

VALIDATION AND BUSINESS RULES

▪ Validation: Is the input potentially good?

Structured correctly?

Ranges, lengths, etc

▪ Rules: Should we do this?

Based on current system state

What the user saw is irrelevant

COMMAND PROCESSING LAYERS

Input from User

Validation

Rules

Persistence

DB

Transaction

COMMAND PROCESSING TIERS

DB
WSInput

Validation Validation

Command

Get

current

state

Rules

Persist

AMAZON.COM “ADD TO SHOPPING CART”

Shopping cart not

actually shown!

Item added

shown

(from cmd)

SHOULD WE DO WHAT THE USER ASKED?

ID Total Date Shipped Account etc etc etc

317 $37.87 1/9/09 Yes A17T5

318 $99.99 3/7/09 Yes A17T5

319 $100.11 4/8/09 Yes P313Z

320 $69.47 9/9/09 No P599Z

Orders

CancelSave

RESERVATION SYSTEMS

RESERVATION SYSTEMS

UI BORN OF SINGLE USER THINKING

Customers line up at ticket counters

Line provides fairness

Line is invisible on the internet – we can be “unfair”

NOT CAPTURING USER INTENT

▪ In a traditional UI – the checkbox

▪ Why do users select multiple seats?

Because they’re reserving for a family / friends

▪ But then, concurrency happens

Somebody else got in first on one of the seats

▪ Try to find a block of seats somewhere else

CAPTURING USER INTENT

▪ Group reservations: people want to sit together

▪ Enter number of people

▪ Enter preferred seat type – indicates cost

▪ Emails back when reservation can be filled

Include waiting list functionality

USER POPULATION PARTITIONING

▪ VIP customers – first window of time

Want the best seats in the house

Willing to pay extra for the privilege

▪ Groups – next window of time

Want to sit together

▪ Everybody else – last window of time

Will take any free seat

SCALABILITY BENEFITS
Thousands of seats, hundreds of thousands of requests

No need to show actual status

WHAT IS A GOOD COMMAND?

▪ The kind you can reply with:

“Thank you.

Your confirmation email will arrive shortly”

OR

Just fake it in the UI

▪ Inherently asynchronous

▪ Not really related to an entity

COMMANDS VERSUS ENTITIES

▪ It’s easier to validate the command

Less data

More specific

Is this potentially good

▪ Validating large entities is complex

Queries

Commands
DB

WSInput

Validation Rules

Queries

CQRS IN ACTION

View Model

View Model
Updater

Publish

UI

Data from input immediately overlaid on queries

SUMMARY

▪ Think of reads and writes differently

▪ Reflect that difference in the schemas

▪ Design commands so that they almost can’t fail

SCALABILITY AND FLEXIBILITY
MONITORING AND MANAGEMENT

NAMING QUEUES AND PROCESSES

AC

Service

AC

DB

BC

AC

AC

DB

BC

MONITORING QUEUE-BASED SYSTEMS

▪ Visibility into the number of messages in various
queues provides insight

▪ Error queue notifies admins of problems

IDENTIFYING BOTTLENECKS

A B1000 500# of

messages

Throughput 500 msgs/s 50 msgs/s

Total msg

processing

time

2 s 10 s

Performance Counters

SO, WHICH IS WORSE?

A B

T T

80%

SLA SLA

60%

100% 100%

THE MOST IMPORTANT METRIC

B

T

SLA

60%

100%

Predicted time to
breach SLA

SCALABILITY

▪ We can have a number of servers each running an
instance of the same autonomous component

▪ Called the “Competing Consumers” pattern

TRADITIONAL COMPETING CONSUMER
Autonomous Component

ACI

ACI ACI

TX receive

TX receive

TX receive

Autonomous

Component

Instance

on each

machine

COMPETING CONSUMER 2: DISTRIBUTOR

Autonomous Component

Distributor ACI

ACI ACI

Ready

Autonomous

Component

Instance

on each

machine

HETEROGENEOUS SERVER FARMS

Pull

Pull

Pull

Pull

VIRTUALIZATION – PART 1

▪ Connecting monitoring and scaling

▪ When time to violate SLA decreases below T, call API
to provision another vServer

▪ When time to violate SLA increases above T, call API
to deprovision a vServer

▪ Self-scaling systems are possible, given enough
capacity

FAULT TOLERANCE – HIGH LEVEL

▪ Any number of active backups

▪ Automatic load balancing

FAULT TOLERANCE – DETAILS

• In a virtualized environment, the C drive is
actually stored in a file on the SAN

VIRTUALIZATION – CONTINUED

▪ VMWare vSphere handles failover of nodes

Both for workers and distributor

▪ Consider fault-tolerant hardware (Stratus.com) for
greater than 99.999 availability

BACKUPS & DISASTER RECOVERY

▪ If you’re using a SAN:

Database data will be stored there

Queue data will be stored there

▪ Can use SAN Snapshots to get a fully consistent
system-wide backup

▪ Ship the snapshot to a disaster recover site from
time to time

VERSIONING

▪ Clients not bound to a specific server implementation
by a proxy

▪ Queues provide temporal separation

▪ Easy to swap out autonomous component
implementation without affecting clients

VERSIONING – STRATEGY

Client Server DB

Time

V1 V1 V1 V1

V2

V2

V2 V2

Version from “back to front”

ZERO-DOWNTIME UPGRADES

▪ Install v2 process alongside v1

▪ Both feeding off the same Q

▪ Check error queue

▪ Uninstall v1 process

▪ Go to next machine

▪ Automate with scripts

▪ Consider hooking into CI

ACI

v1

ACI

v2

SUMMARY

▪ Configuration of autonomous components enables
rich system capabilities

Flexibility

Scalability

Monitoring

Versioning

LONG RUNNING PROCESSES

WHAT IS “PROCESS”?

A process can be described as a set of activities that
are performed in a certain sequence as a result of
internal and external triggers.

▪ The most basic process control is: if-then

▪ More complex processes include state machines

WHAT IS “LONG RUNNING PROCESS”?

A long running process is a process whose execution
lifetime exceeds the time to process a single external
event or message.

▪ Long running means that multiple external
events/triggers are handled by the same process
instance – is Stateful

▪ Derived from “long-lived transactions” work in the late
80’s and early 90’s

WHY USE LONG RUNNING PROCESS?

▪ Long running processes provide a state management
facility that enables a system to encapsulate the logic
and data for handling an external stream of events.

▪ It’s just good OO programming.

INTEGRATION EXAMPLE

Request

System

Store

A B C

Response

Request

Send requests to 3

other partners

Save requests state

Response 2 Update state

Check if done

Response 3 Update state

Check if done

Response 1 Update state + resolve

Done!
Enqueue Response or publish event

Other Request

Other Request

LONG RUNNING PROCESS IMPLEMENTATION

Process

Store

Queue

SAGAS

▪ Triggers are messages

▪ Similar to message handlers

Can handle a number of different message types

▪ Different from message handlers

Have state, message handlers don’t

DB

Start Saga

Message

Bus

Create Saga For

Message

SagaDispatch Message

Saga

Persiste

r

Send Saga Messages

Save Saga

Persist

DB

Saga

Message

Bus

Get Saga by Message.SagaId

Sag

a

Saga

Persister

1.Get

2.New

3.Fill

4.Return Saga

Dispatch

Message

Complete

Saga Complete

Delete

Can occur on multiple

machines concurrently

Timeouts are

regular

messages

THE HARD PART

▪ The easy part is using the building blocks

▪ The hard part is analyzing the business processes to
identify what the steps should be.

▪ When interacting with legacy systems, use a saga to
manage the flow, a separate adapter for the
integration.

Adapters

Sagas

SIMILAR TO HEXAGONAL ARCHITECTURE

Logic

msg

msg

Legacy

App

RPC

3rd party

WS

WS

WORKFLOW & ORCHESTRATION

▪ Orchestration is not a service by itself.

▪ Divide up workflows/orchestrations along service
boundaries

Events are published at the end of the sub-flow in a
service

Events trigger a sub-flow in other services

▪ Sagas can be used for CEP/ESP:

complex event processing, event-stream proc.

SUMMARY

▪ Use messaging building blocks to support long
running processes.

▪ Unit testing is critical for time-bound processes

▪ Keep service boundaries explicit

SERVICE LAYER
DOMAIN MODEL INTERACTIONS

TRADITIONAL ARCHITECTURE

BUT WHERE DO BUSINESS RULES GO?

Here?

Here?

Here?
Here?

Here?

Here?

THE BOOK
that changed everything

… and the pattern that

battles complexity…

THE DOMAIN MODEL PATTERN

Events

WHEN TO USE IT, WHEN NOT TO

▪ “If you have complicated and everchanging business
rules…”

▪ “If you have simple not-null checks and a couple of
sums to calculate, a Transaction Script is a better
bet”

p119 Patterns of Enterprise Application
Architecture

INDEPENDENT OF ALL CONCERNS

UI DB

Communications

DOMAIN MODELS MADE OF “POJO”S

public class Customer
{
// properties
// methods

}

public class Order
{
// properties
// methods

}

public class OrderLine
{
// properties
// methods

}

public class Product
{
// properties
// methods

}

But not every bunch of POJOs is a domain model

HIGHLY TESTABLE

Register for

events

Call a

method

Check

properties &

event args

Test

UNIT TEST SAMPLE

[TestMethod]
public void CreateOrderShouldConnectToCustomer()
{
Customer c = new Customer();
Order o = c.CreateOrder();

Assert.AreEqual(c, o.Customer);
}

CAN BE DEPLOYED MULTI-TIER

Different types of domain models for different tiers

SQL CLR

CONCURRENCY MODELS

Optimistic

Pessimistic

Realistic

MULTI-TABLE SPANNING TRANSACTIONS

Transactions can get an inconsistent picture!

Time

T0

T1

T2

T3

T4

Begin TX Begin TX Begin TX

Update A Update BRead A

Read B

Commit

Commit

CommitUse values

of A and B to

Update C

TX 1 TX 2 TX 3

REALISTIC CONCURRENCY

Need to get a current set of data

before changing anything

Get Domain Object

Ask it to update itself

Domain Object runs business rules

If successful, updates its own state

public void Handle(MakeCustomerPreferredMsg m)
{

Customer c = s.Get<Customer>(m.CustomerId);
c.MakePreferred();

}

SERVICE LAYER SAMPLE CODE

Necessary to address concurrency

public void MakePreferred()
{
foreach(Order o in this.UnshippedOrders)

foreach(Orderline ol in o.OrderLines)
ol.Discount(10.Percent);

}

DOMAIN MODEL SAMPLE : CUSTOMER

Entity relationships expose us to possible inconsistency!

REALISTIC CONCURRENCY

Some changes can be concurrent, others can’t (?)

❖ You change the customer’s address

❖ I update the customer’s credit history

❖ You cancel an order

❖ I try to ship the order

Race condition

EVEN IF THEY’RE EASY TO IMPLEMENT

public class Order
{

public void Cancel()

{
if (status != OrderStatusEnum.Shipped)

//cancel
}

public void Ship()

{
if (status != OrderStatusEnum.Cancelled)

//ship
}

}

REMEMBER

▪ In CQRS, commands don’t fail

▪ Race conditions don’t exist in business

▪ A microsecond shouldn’t change business objectives

FIND UNDERLYING BUSINESS OBJECTIVES

Rules:

1. Cannot cancel shipped orders

Because shipping costs money

That money would be lost

if the customer cancelled

Because we refund the customers money

2. Don’t ship cancelled orders

Why?

So?

Why?

ANALYZE

▪ When an order is cancelled,

does the refund need to be given

immediately?

▪

No

Yes

DIG DEEPER

What does a customer have to do

in order to get a refund?

CONSIDER SERVICE BOUNDARIES

Sales BillingShipping

Cancel Order Ship Products

Products Returned

Refund Policy

Which services require a domain model?

Refund policy driven by multiple messages

DOMAIN MODELS ARE SAGAS

BUY ITEM (IN-APP PURCHASE)

Pref?

Val >100 Val >100

Calc total val of orders

in past 2 weeks

Calc total val of orders

in past 1 week

20% discount 10% discount 10% discount No discount

If balance sufficient, reduce balance & fulfill

N

N
N

Y

Y Y

WEB SERVICES & USER
INTERFACES

COMMON WEB ARCHITECTURE

SYNC REQUEST/RESPONSE

DB

Just shows that the DB is the bottleneck

SCALING OUT THE WEB TIER

Keeping the cache up to date

across farms is challenging

Often requires “sticky sessions”

and that undermines load balancing

CACHING – IN PROCESS

DISTRIBUTED CACHING

Not all data is kept on each node

Beware the temptation to “loop”

Reads can interfere with writes

and that hurts performance

CACHE INVALIDATION

CONTENT DELIVERY NETWORKS

Great for off-loading

static content

CSS

IMG

JS

ALMOST THERE…

Don’t use a smart donkey when what you need is a

heavy ox

AMAZON.COM

It’s all dynamic It’s all static

THE STATIC DYNAMIC WEB

Layout.CSS Layout.JS

Dept.XML
Kindle.XML

* Don’t do this on yourhome

page

WHAT HAPPENS OVER THE WEB?

Layout.CSS

Layout.JS

Cached by browser

Dept.XML

Cached by ISP

Kindle.XML

Cached by CDN

Nobody
even comes
knocking

PERSONALIZATION

The weather widget

• Look up location by IP

• Look up weather by location

2 back-to-back remote calls to
costly 3rd party services

Leverage cookies or browser-local storage

THANK YOU

Udi Dahan – The Software Simplist

Enterprise Development Expert & SOA Specialist

